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Agradeço aos professores Virǵılio Ferreira Filho e Carlos Eduardo Infante por

terem aceitado participar da banca de avaliação.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior - Brasil (CAPES) - Código de Financiamento 001.
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Problemas de descomissionamento na indústria de óleo e gás demandam, com

frequência, processos de tomada de decisões robustos, que podem requisitar um

grande número de critérios já que consideram os interesses, muitas vezes confli-

tantes, dos stakeholders. Além disso, cada critério deve ser avaliado com relação a

cada equipamento para cada alternativa dispońıvel de descomissionamento. Conse-

quentemente, é provável que campos complexos de exploração de óleo e gás, compos-

tos por um grande número de equipamentos, requeiram estudos de descomissiona-

mento prolongados. Para contornar esse problema, este trabalho propôs a aplicação

de métodos de aprendizado de máquinas de classificação para identificação de um

número reduzido de critérios relevantes com respeito à escolha da alternativa de

descomissionamento. O intuito foi desenvolver um método que, de posse das car-

acteŕısticas dos equipamentos e de um número reduzido de avaliações de critérios,

identifique a alternativa que emergiria de uma análise completa. Para validar a abor-

dagem sugerida, um banco de dados foi composto baseado em dados reais de dutos

submarinos através do método bootstrap. Dessa forma, basta avaliar os critérios

mais relevantes para todos os equipamentos não pertencentes ao conjunto de treina-

mento, reduzindo assim tanto o custo quanto a duração do processo. Os resultados

numéricos sugerem que o método proposto pode trazer benef́ıcios significativos em

ambos os aspectos.
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Decommissioning problems within the oil and gas industry often demand rather

involved decision making processes, which may give rise to a large number of criteria

since it considers the usually conflicting interests of multiple stakeholders. Moreover,

each criterion must be evaluated in connection with each piece of equipment for each

available decommissioning alternative. Hence, complex oil and gas fields comprised

of a very large number of installations are likely to set up prolonged decommissioning

studies. To circumvent this problem, this work proposed the application of feature

selection and machine learning supervised techniques to simplify the process. The

rationale is to make use of a training set to identify a reduced subset of criteria with

significant impact on the selection of the decommissioning alternative. To validate

the proposed approach, a dataset was composed based on real-world data from

actual sub-sea pipelines through bootstrap techniques. By doing so, one only needs

to assess the most significant criteria for all installations without the training set,

thus reducing both cost and duration of the decommissioning study as a whole. Our

numerical results suggest that the proposed method may induce significant savings

in both aspects.
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Chapter 1

Introduction

Decommissioning, that is managing the end-of-life of a service or a installation,

exists in several economical sectors, such as nuclear, mining, transportation and

oil and gas (e.g., FOWLER et al., 2014; NÓBREGA et al., 2008; SMYTH et al.,

2015; SUH et al., 2018). These are undoubtedly very complex problems, since they

directly affect environmental and socio-economic issues and may impose risks for

workers and the overall population. Even though decommissioning processes may

differ depending upon the economic sector, there certainly exist similarities and

cross-industry insights that can be exploited. For example, both the nuclear and the

oil & gas sector need rigorous regulation, involve considerable amounts of financial

resources and pose human and environmental risks (ARUP, 2015)

In particular, the end-of-life of oil & gas installation has become a worldwide

concern. In fact, many countries that have a significant production have recently

been discussing regulations and elaborating guidelines on the issue (DMIRS, 2017;

MEI, 2018; OIL & GAS UK, 2015; ROUSE et al., 2018). Other countries with

a more recent oil & gas industry, such as Australia (BULL e LOVE, 2019) and

Brazil, can take advantage of experiences already acquired. The sector presented

some difficulties in the past that influence it to be more careful with regard to

future decision-making. For example, one of the largest oil companies in the world

experienced some problems with reference to the decommissioning of the Brent Spar

platform, UK, in the mid-1990s (BULL e LOVE, 2019; RICE e OWEN, 1999).
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Their fist decommissioning option was to sink the structure at the sea but they were

stopped by the society, Greenpeace, and European governments over environmental

concerns. Almost three years after this fist attempt, they finally found an acceptable

decommissioning alternative that was to re-use the structure. One lesson to be

learned from this experience is not to underestimate the importance of considering

the opinion of the local community and of the whole set of stakeholders. Another

lesson concerns the importance of keeping effective communication channels with the

stakeholders. Overlooking such issues can reportedly result in severe consequences

for the company’s public image and finances.

Among the diversity of structures that are part of the offshore system, sub-sea

installations demand a special attention due to both their sensitive nature and the

logistic challenges associated to the decommissioning process. These installations

comprise all pieces of equipment and facilities accommodated in the seabed that al-

low the control and operation of the production system, such as pipelines, flowlines,

risers and manifold (PRADO, 2015). In addition, decommissioning is becoming

more complex as time elapses due to the increased number of pieces of equipment

operating in deep waters. Only in the North Sea there are more than 45,000 kilome-

tres of pipelines, umbilicals and cables installed (OIL & GAS UK, 2013), all of which

will require decommissioning at some point in the future (ARUP, 2015). Introduced

in 1966 (OIL & GAS UK, 2013), sub-sea structures have different compositions

and require distinct decommissioning activities and machinery. Initially, possible

end-of-life measures include in-situ abandonment and total or partial removal. Fur-

thermore, total or partial removal can be achieved by means of different alternatives,

which depend on the available removal techniques. Given the distinct impacts and a

possibly large number of criteria to consider, selecting a decommissioning alternative

becomes a rather challenging problem.

To address such a problem, one must account for the great variety of technolo-

gies and materials available, as well as the distinct environmental and socio-economic

conditions of each locality. Regarding environmental aspects, the hard substrate of

2



a submerged jacket usually provides reef habitat for several flora and fauna species

(BULL e LOVE, 2019). In addition, each of the available techniques used for re-

moving installations may have different effects on marine animals, such as producing

stress and loud sounds. Morevoer, considering socio-economic aspects, the decom-

missioning options might affect commercial and recreational fisheries, since offshore

structures can provide a safe harbour for different species while also preventing ac-

cess to some areas (KRUSE et al., 2015). Furthermore, the analysis should consider

safety issues, such as collisions and occupational hazards (BABALEYE e KURT,

2019). Each alternative should also consider technical feasibility, including possi-

ble crossings between pipelines and mobilisation of specialised vessels. Lastly, one

should not forget to evaluate the costs associated with each of the actions required.

Please observe that these are just some examples and the debates regarding all

possible impacts can be extensive. All of the environmental, social, economical,

safety and technical aspects interact with each other, often giving rise to complex

trade-offs (FOWLER et al., 2014). In order to evaluate the alternatives, a multidis-

ciplinary approach is needed. Moreover, the possibly large number of stakeholders

and their potentially conflicting interests can result in a very controversial process

(e.g. FOWLER et al., 2014; HENRION et al., 2015).

The evaluations mentioned above can vary depending on the different environ-

mental conditions where the oil structures are located, the wide range of ecosystems,

distinct waterlines and distance from the coast. The physical condition of the struc-

tures themselves should also be accounted for. For example, pipelines can carry oil

or water, can be inactivated for a long time or be trenched. Hence, it is unlikely that

a single decommissioning alternative be the most adequate for all existing structures

(FOWLER et al., 2014).

1.1 Motivation and general problem approach

To the best of our knowledge, the majority of published oil and gas decommissioning

reports so far have relied on a methodology called comparative assessment (DMIRS,

3



2017; MEI, 2018; OIL & GAS UK, 2015), often based on subjective judgements

by stakeholders with respect to a number of pre-selected criteria and sub-criteria.

Generally, the alternatives are ranked by means of a weighted sum of the evaluations

with regard to the selected criteria (e.g., INEOS, 2018; REPSOL, 2017; SHELL,

2017a). The decision making process is commonly conducted individually for each

piece of equipment, in a progression that can become rather cumbersome for large

offshore systems. Given the possibly large extension of the sub-sea system, the

application of multi-criteria methodology on a case-by-case basis often results in a

very time-consuming process. Indeed, some reported studies have taken up to ten

years to be finalised (SHELL, 2017b). In addition, the evaluation of sub-criteria

for each alternative is often subjective, and based on the preference of either the

decision maker or a group of stakeholders (DURO et al., 2014). Hence, the process

tends to become more complex, labour intensive and error prone as the number of

criteria/sub-criteria increases (WAEGEMAN et al., 2009).

Given the previously mentioned problems regarding an extensive evaluation of

each equipment individually, the motivation of this work is to present a dimen-

sionality reduction approach for decommissioning problems, making use of machine

learning techniques. This work proposes a twofold approach to address such pitfalls.

Firstly, it introduces a way to extract the necessary information while keeping cri-

teria assessments to a minimum. Secondly, it seeks patterns in the decision making

process to forecast the outcome of the decision-aid tool for each equipment without

necessarily resourcing to the costly MCDA assessment phase.

1.2 Objectives

Based on the discussion previously exposed, the main objective of this study is

to present a method for dimensionality reduction in decommissioning studies in the

field of oil and gas, mainly focused on sub-sea systems. The proposed method should

be devised in such a way that it can also ensure the selection of the most appropriate

decommissioning alternatives. The rationale is to reduce not only the computational
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time required to reach a decision, but also the labour intensive process required to

produce an appraisal of the performance of each piece of equipment with respect to

each sub-criteria. It is expected that the decommissioning process can be further

abbreviated if the decision maker elects to use the decommissioning alternatives

predicted by the proposed algorithm for all installations outside the training set,

instead of conducting an individual MCDA analysis for each of them individually.

To accomplish our aim, we will attempt to reach the following intermediate

objectives:

• To introduce a dataset based on real-world data from actual sub-sea pipelines,

in order to validate the proposed approach, which we believe can be used in the

future for benchmarking purposes. It is worth emphasising that this training

dataset should take into account evaluations of the impacts with respect to

all criteria/sub-criteria and also physical properties of the equipment. Also,

it should include a column containing the most appropriate decommissioning

alternative for each piece of equipment, as identified by the application of a

selected multi-criteria decision analysis (MCDA) tool;

• To compare the performance of selected supervised methods in order to obtain

a model to classify the pieces of equipment, based on similarities in their

characteristics and criteria/sub-criteria assessment;

• To employ a feature selection to identify the smallest subset of sub-criteria

which are most relevant to reaching a decision, and whose application does

not significantly alter the outcome of the MCDA tool when the remaining

sub-criteria are left out of the analysis.

1.3 Outline

This work is organised in five Chapters as follows. The literature review is presented

in Chapter 2, including a brief overview of decommissioning in several fields and a

review of decision analysis methods, with emphasis on oil and gas applications. It

5



also features an overall picture of the machine learning techniques considered in this

present work. Subsequently, Chapter 3 describes problem setting for this study and

explains the general method of analysis. The dataset of the numerical experiments

is introduced in Chapter 4. This Chapter also introduces the experimental results,

where the machine learning (ML) methods are compared and a variable relevance

analysis is reported. Finally, Chapter 5 concludes the study and includes suggestions

for future work.

6



Chapter 2

Literature Review

This chapter contains a bibliographical review of the main fields related to this

study, namely decommissioning problems, decision analysis and machine learning.

These topics are discussed in depth in the remainder of the chapter.

2.1 Decommissioning

Decommissioning refers to the adoption of measures, arrangements and procedures

for the proper uninstalling of an enterprise after the end of its useful economic

life cycle, taking into account environmental, safety, reliability and transparency

requirements, among others (ANEEL, 2009; ANP, 2015).

As the term decommissioning is usually associated with a facility being with-

drawn from service, it is often mistakenly treated as a synonym for removal or

disposal (DMIRS, 2017). One can argue, however, that the latter are only two pos-

sible alternatives in a decommissioning decision-making process. Decision making

is linked to several factors, such as regulation, cost, available technologies, safety,

environmental and social impacts, among others. These factors may vary depending

on the sector to which the decommissioning refers.

The nuclear sector has a large number of infrastructures reaching their end of life

(IAEA, 2017). SUH et al. (2018) have historically discussed the main parameters

that influence the decommissioning decision making within the sector, highlighting

7



the difficulties in the evaluation of possible strategies. They also argue that major

accidents related to premature decommissioning reinforced the need to carry out

prior and detailed planning. Perhaps because of its sensitive nature, it can be said

that the nuclear sector has internationally more consolidated regulations than oil

and gas, for example. Such regulations, however, are not prescriptive with respect

to the strategic decisions to be taken. These, in turn, involve temporal (immediate

or delayed dismantling) and spatial (storage location of radioactive material) issues.

Another interesting sector for decommissioning studies is that of hydroelectric

plants’ reservoirs. Many reasons can lead to the decommissioning of such a reser-

voir, not solely the end of its economic viability. Such motivations can be safety,

non-compensatory exchanges between the beneficiaries of the dam, as well as the

environmental impacts (USSD, 2015). As can be expected, there are also several

decommissioning alternatives for this type of installation, such as complete or par-

tial removal. Prior to selecting an alternative, the decision maker should analyse

different variables, such as public safety, fish and aquatic life migration, river restora-

tion, economic and social benefits, and potential environmental impacts. For more

details, refer to (USSD, 2015).

Furthermore, decommissioning is a topic of interest in more recent energy sec-

tors, such as wind and solar, which gained an increasing importance in recent years

(SMYTH et al., 2015). These require installations that may have a shorter service

life - wind turbines, for example, can have a service life of only 20 years (SUN

et al., 2017). For this reason, future decommissioning processes within these sectors

already raise discussions. According to SØNDERGAARD et al. (2014), different

materials should be considered for the construction of solar panels, with a view at

promoting increased efficiency, as well as to facilitate the search for suitable end-of-

life alternatives. Under analogous motivations, SUN et al. (2017) propose a method

to optimise the design of offshore wind turbines in order to reduce the decommis-

sioning costs at the end of their operation.

It should be noted that decommissioning is not only an issue in the energy

8



field. Instead, it is also relevant in several other economic sectors. For example,

the mining sector demands several closure-related activities and requires careful

evaluation of the environmental problems related to tailing damns (NÓBREGA

et al., 2008). Likewise, the transport sector seeks an adequate final destination for

vehicles (SMYTH et al., 2015) and submarines (ISM, 2011), among others.

In the oil and gas sector, the first decommissioning dates back to the 1970s

(CHANDLER et al., 2017). Currently, the subject has been the focus of many

discussions, since only a small portion of platforms and sub-sea installations around

the world has been decommissioned. There are, therefore, many decommissioning

activities to be carried out in the future. In addition, many installations are in the

final phase of their useful life (HAMZAH, 2003). Due to the still insipid specific

legislation and the low availability of personnel with specialised qualification in the

area, the decommissioning process can be long and bureaucratic (HAMZAH, 2003).

Other factor to be considered in connection to sub-sea decommissioning is the

cost. Besides, it should be noted that the discussion regarding cost encompasses

the financial responsibilities of the actors, as well as their impact on future projects

(ALMEIDA et al., 2017). There are also a series of debates that address different

aspects, such as the proper disposal of materials, interference in the activities of

other users of the sea, among others (e.g. CANTLE e BERNSTEIN, 2015; KRUSE

et al., 2015).

The need to adopt an efficient decision-making methodology is reinforced here,

given the bureaucracy, the diversity of conflicting factors guiding the decision pro-

cess and the need for a transparent decision-making that is also accepted by the

stakeholders. Therefore, the forthcoming sections discuss decision analysis.

2.2 Decision analysis

Decision analysis aims to select the most suitable alternative in a process that gener-

ally includes trade-offs because it involves conflicting objectives and multiple options

(HUANG et al., 1995). Among the available analytic techniques, one finds Multiple

9



Criteria Decision Making (MCDM) methods and Decisions Trees (DT) (ROKACH

e MAIMON, 2008), among others, as depicted in Figure 2.1. Notice that OMADM

stands for other multiple attribute decision making methods (ZHOU et al., 2006).

Figure 2.1: Most popular decision analysis methods.

Source: ZHOU et al. (2006)

Decommissioning is naturally a complex problem that involves multiple stake-

holders with distinct goals, as well as multiple alternative courses of actions. Aiming

to identify how this problem has been addressed in the literature, Section 2.2.1 briefly

describes multiple criteria decision analysis. Also, Section 2.2.2 includes a survey of

decision making techniques applied to decommissioning in the oil and gas sector.

2.2.1 Multi-criteria decision analysis (MCDA)

Multi-criteria decision analysis is a methodological framework that aims to support

complex decisions, enabling the comparison of different alternatives according to

established criteria, with the final goal of selecting one such alternative. MCDA

methods can be roughly classified into single-criterion synthesis, outranking and

iterative methods (ALMEIDA, 2000; GRECO et al., 2005).

Unlike single-criterion synthesis methods, outranking approaches do not perform

an aggregation step to reach a score for each alternative. Additionally, outranking

allows for non-comparability according to the structure of preference prescribed by

10



the decision maker. Hence, there may be alternatives that simply cannot be com-

pared. Among the outranking methods, Elimination and Choice Expressing the Re-

ality (ELECTRE) and Preference Ranking Organisation Method (PROMETHEE)

families stand out as the most prevalent (ALMEIDA, 2000). The next session sum-

marises the ELECTRE method, which was the method we applied in our numerical

examples of Chapter 4.

ELECTRE

Regarding the ELECTRE family, the methods ELECTRE I and II were replaced

by ELECTRE IS and III, respectively, and are currently only interesting from a

pedagogical and/or historical standpoint (ROY, 1990). ELECTRE IS deals with

the selection problem, i.e., that of finding the most appropriate alternative. On

the other hand, ELECTRE III and IV tackle ranking problems, which aim to rank

the alternatives in decreasing order of preference. Arguably, ranking problems are

better suited to decommissioning because they provide the decision maker with a

broader picture of the reality. ELECTRE IV is appropriate in applications with no

specific information on the importance (weight) of each criterion in the aggregation

process.

ELECTRE III (ROY, 1985) allows the ordering of alternatives based on out-

ranking relationships and uses pseudo-criteria, introducing discrimination thresh-

olds (preference and indifference), i.e., establishing ranges of values for accepting

a preference relation (ROWLEY et al., 2012). In order to establish an outranking

relationship between alternatives a and b, it is necessary that a be at least as good

as b. For each criterion j, 1 ≤ j ≤ n, it is possible to associate an strict outranking

relation Sj. Let A be the set of feasible alternatives and gj(a) represent the perfor-

mance or the evaluation of the alternative a ∈ A under criterion j. Furthermore, let

kj ≥ 0 be the weight assigned for criterion j, and suppose that
∑n

j=1 kj = 1.

Let qj ≥ 0 represents the indifference threshold, which delimits how much better

gj(a) must be in relation to gj(b) for the preference relation to be established. Also
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let us define the preference threshold pj ≥ 0, which is a limit value above which

the decision maker shows a clear strict preference for one alternative over other,

under criterion j. Lastly, consider vj ≥ 0 as the veto threshold, a difference between

alternatives a and b with respect to criterion j that prevents the decision maker

from selecting alternative b, regardless of the outranking relationships under the

remaining criteria. In that case, the decision maker considers that the performance

of alternative b under criterion j is so poor that it cannot be selected, even if it

performs well under the remaining criteria.

The preference relations are constructed according to the concordance index

C(a, b), which roughly assesses the degree to which a outranks b when the decision

maker accounts for all criteria, and is computed by equation (2.1). The outranking

relation between alternatives a and b with respect to an individual criterion j is

given by cj(a, b), which is evaluated by means of equation (2.2).

C(a, b) =
n∑
j=1

kjcj(a, b) (2.1)

cj(a, b) =


1, if gj(a) + qj ≥ gj(b)

0, if gj(a) + pj ≤ gj(b)

pj + gj(a)− gj(b)
pj − qj

, otherwise.

(2.2)

Furthermore, let us also define the discordance index dj(a, b) with respect to

individual criteria j, given by (2.3), which roughly measures the level of disagreement

with respect to a preference relation

dj(a, b) =


0, if gj(b) ≤ pj + gj(a)

1, if gj(b) > vj + gj(a)

gj(b)− gj(a)− pj
vj − pj

, otherwise.

(2.3)

Based on the indexes shown above, the degree of outranking between alternatives

is finally established by the outranking relation S(a, b), which is defined in equation
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(2.4) below

S(a, b) =


C(a, b) if dj(a, b) ≤ C(a, b) ∀jεJ

C(a, b)×
∏

jεJ(a,b)

1− dj(a, b)
1− C(a, b)

, otherwise,
(2.4)

where J(a, b) is the set of criteria for which dj(a, b) > C(a, b). Note that the equa-

tion states that if the concordance index is greater than all discordance indices, the

outranking relation is equal to the concordance index. Otherwise, when the concor-

dance index is lower than at least one discordance index, the outranking relation is

decreased accordingly.

2.2.2 Decision-making methods applied to decommissioning

in the oil and gas sector

Multi-criteria decision analysis (MCDA) methods have been successfully applied

in several sectors, such as agriculture (e.g. BLANQUART, 2009), healthcare (e.g.

THOKALA et al., 2016) and waste management (e.g. ANGELO et al., 2017). They

have also been utilised to aid decommissioning decisions in many distinct sectors, for

instance, nuclear (e.g. KIM e SONG, 2009), vehicles dismantling (e.g. MERGIAS

et al., 2007) and mining (e.g. BANGIAN et al., 2012). The decommissioning of

oil and gas installations, in particular, has attracted considerable attention in the

literature. Table 2.1 summarises the studies found in the literature, which include

but are not limited to MCDA analysis.

Regarding MCDA methods, BERNSTEIN et al. (2010) and HENRION et al.

(2015) report a decommissioning study involving oil and gas platforms in California.

Both works make use of a tool based on Multi-Attribute Utility Theory (MAUT) with

linear utility functions to evaluate the attributes (criteria). Weights were assigned

by the swing weighting method (EDWARDS e BARRON, 1994), which assigns the

weights in a comparative way. The users gives the highest weight to the criterion that
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they view as the most important one. Then, they order the other weights from the

second most important down to the least one, always based on each criterion worst

and best value. For more details refer to (EDWARDS e BARRON, 1994). After

the weights were assigned, a sensitivity analysis was conducted to infer the effect

of varying them. Finally, HENRION et al. (2015) highlight that the large number

of available decommissioning alternatives may render the problem intractable, and

suggest a preliminary screening based on economic, technical and political feasibility

to tackle this issue.

References
Decision-making

methods
Sub-sea

assessment
Methods for selecting

the criteria

A
rt

ic
le

s CRIPPS e AABEL (2002) Impact Assessment NR
FOWLER et al. (2014) SAW Stakeholders’ opinions

HENRION et al. (2015) MAUT
Literature and

Stakeholders’ opinions

NA et al. (2017) AHP
Literature and

Stakeholders’ opinions

R
e
p

o
rt

s

XODUS (2017) AHP X BEIS (2018)
REPSOL (2017) AHP X BEIS (2018)
SHELL (2017a) Comparative assessment X BEIS (2018)
INEOS (2018) Comparative assessment X BEIS (2018)
MARATHON OIL (2017) Comparative assessment X BEIS (2018)
ITHACA (2018) Comparative assessment X BEIS (2018)
BG GROUP (2016) Comparative assessment X BEIS (2018)
PERENCO & TULLOW (2014) Comparative assessment X BEIS (2018)
CNRI (2013) Comparative assessment X BEIS (2018)
SPIRIT ENERGY (2018) Comparative assessment X BEIS (2018)

NR - Not reported; AHP - Analytic Hierarchy Process; BEIS - Department for Business, En-
ergy & Industrial Strategy; SAW - Simple Additive Weighting; MAUT - Multi-Attribute Utility
Theory

Table 2.1: Summary of the decision-making methods applied to decommissioning in
the oil and gas sector .

Another approach to the decommissioning problem of oil and gas installations

is proposed by FOWLER et al. (2014). This approach is based on the ordering of

the alternatives for each criterion by the stakeholders. Afterwards, the alternatives

are classified as approved or disapproved based on a comparison with the average

performance for each decommissioning criteria.

Arguably, the most prevalent MCDA method in the literature of oil and gas

decommissioning is Analytic Hierarchy Process (AHP). It has been applied by NA

et al. (2017), who made use of the Saaty scale (SAATY, 1990) to quantify expert

evaluations. In contrast, an AHP-based method was applied in (REPSOL, 2017;
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XODUS, 2017) which employs qualitative judgements based on quantitative data.

Dubbed Xodus’s Multiple Criteria Decision Analysis, this method differs from clas-

sical AHP in that it uses a purely qualitative scale.

In the context of real-world decommissioning processes in the field of oil and

gas, some guidelines have been developed to standardise and aid company deci-

sions. These guidelines are often referred to as comparative assessment (e.g., BEIS,

2018; BG GROUP, 2016; MEI, 2018) and make use of single-criterion synthesis,

which essentially transforms the multi-criteria problem into a single-criterion prob-

lem whereby the single criterion is defined as a weighted average of the original

criteria. Hence, the overall score of a given alternative becomes a weighted average

of the scores of such an alternative with respect to all criteria. The Brunei guideline

(MEI, 2018) proposes a qualitative approach based on a colour scale that associates

each colour to a preference level. Considerably influential, the UK guide (BEIS,

2018) has already been used as a basis for several reports (BG GROUP, 2016; CNRI,

2013; INEOS, 2018; ITHACA, 2018; MARATHON OIL, 2017; SHELL, 2017a), as

depicted in Table 2.1. The manual suggests the use of five criteria, namely safety,

environmental, technical, social and economic, which were also proposed in (MEI,

2018).

It is also important to note that within the literature, only technical reports have

addressed the decommissioning of sub-sea installations, generally with a focus on

pipelines, as shown in Table 2.1. In addition, the guidelines suggest three possible

methods for evaluating alternatives. The first is qualitative and based on a colour

scale, the second and third allow to merge quantitative and qualitative analyses,

and the third supports weight assignment.

The Windermere report (INEOS, 2018) developed a risk matrix to aid decommis-

sioning decisions regarding umbilicals. The risk matrix contrasts the level of impact

- ranging from negligent to catastrophic - with the probability of impact, which

ranges from rare to very probable, for each criterion. A workshop was conducted to

produce these qualitative evaluations. Finally, the global score of each alternative
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is computed as the weighted average of the scores for individual criteria. A similar

approach was employed in (ITHACA, 2018). However, the latter also made use of

quantitative evaluations that were later transformed into normalized scores.

The BG Group report (BG GROUP, 2016) also abides by the UK decommis-

sioning guideline (OIL & GAS UK, 2015). Their method applies a colour scale

in a preliminary screening designed to eliminate infeasible alternatives. They also

make use of a weighted average of scores with respect to the criteria, whereby the

weights are assigned through semantic pairwise comparisons. Finally, a compre-

hensive analysis was reported in (SHELL, 2017a) which includes both quantitative

and qualitative evaluations, as well as the analysis of several weight assignment

possibilities by means of a sensitivity analysis.

The decision methods previously described are applied individually for each piece

of equipment. Additionally, the criteria are usually assessed by means of subjective

evaluations by stakeholders, which render the process particularly laborious, time

consuming and error prone. The last column of Table 2.1 conveys the methods

that have been applied for criteria selection in oil & gas decommissioning decision-

making. Most of the choices are based on the recommendations in (BEIS, 2018),

literature findings and stakeholders’ assessments. This means that in most cases

there is no quantitative analysis of the impact of the subset of selected criteria on

the final outcome of the decision analysis tool.

This study argues that machine learning (ML) methods are a natural way to

mitigate the problems associated with the individual evaluation of pieces of equip-

ment and abbreviate the duration of the decommissioning study. Indeed, ML can

be applied to generate groups of similar pieces of equipment which can benefit from

the same decommissioning alternative. Additionally, feature selection can be em-

ployed to simplify the analysis and hence reduce the total time devoted to the

decommissioning study. As illustrated above, the use of dimensionality reduction in

decommissioning problems is still incipient. Some works (e.g., AHMED et al., 2016;

ISM, 2011) advocated the use of expert judgement for criteria selection/elimination.
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In contrast, an approach that is centred on information availability was introduced

in (BERNSTEIN et al., 2010).

The need for ML techniques in the context of decommissioning studies, which

is reinforced in this study, has already been acknowledged in pioneering decommis-

sioning studies (e.g., MEI, 2018; OIL & GAS UK, 2015), even though it was deferred

to later work. Specifically, these references suggest clustering pieces of equipment

based on similarities with respect to their characteristics, such as sub-sea status,

diameter, installation data, proximity to other infrastructure, among others, and

then conducting a unique combined comparative assessment. We argue that such

a classification may be insufficient and should benefit from the assessment of a re-

duced number of criteria/sub-criteria that may act as proxies for the characteristics

of the environment surrounding the installation, which certainly plays an important

role in the selection of the decommissioning alternative. Classic MCDA methods

are not designed to deal with big data and a desirable solution would be to find the

most relevant subset of factors (CARLSSON e WALDEN, 2019). Therefore, there

seems to be plenty of room for the introduction of formal machine learning tech-

niques to address classification and variable selection in decommissioning problems,

as suggested in DOUMPOS e GRIGOROUDIS (2013) and CARLSSON e WALDEN

(2019). Accordingly, these methods are discussed in the next section.

2.3 Machine Learning

Machine learning (ML) can be understood as a set of techniques designed to ex-

tract models from vast quantities of data by finding structural patterns (WITTEN

et al., 2016). However, the same set of techniques can be employed in connection to

small datasets, as long as some guidelines are followed in the process of producing

large synthetic datasets based on real-world data. We defer the discussion of such

guidelines to section 2.3.1.

An important application of ML is to reduce the dimension of large datasets.

Some techniques applied to this end are principal component analysis (PCA), cor-
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relation matrix and clustering techniques (DEB e SAXENA, 2005; FAWZY et al.,

2018; MITRA et al., 2002; PEREZ-GALLARDO et al., 2018; ZHU et al., 2015). A

brief survey of dimensionality reduction methods and some of their applications will

be presented in sections 2.3.2 and 2.3.3, respectively.

Furthermore, as mentioned previously in this work, classification analysis is sug-

gested for dealing with the pitfalls related to decision making in oil and gas decom-

missioning. It can generate groups of pieces of equipment for which similar decisions

are advisable, thus simplifying the analysis and contributing to the overall reduction

of the total time devoted to the decommissioning study. In particular, supervised

learning methods are the most adequate for decommissioning studies, given that

training pairs of installations and decommissioning alternatives can be seamlessly

produced by the MCDA analysis tool. Such methods are discussed in depth in

section 2.3.4.

2.3.1 Reduced Datasets

Although big data is one of the hottest topics nowadays, the literature contains many

reports of insufficient datasets in diverse fields, such as medicine and manufacturing.

The lack of data is often connected to time consuming and/or uneconomical data

collection (CHEN et al., 2017; LATEH et al., 2017). Machine learning algorithms

are data-dependent and models based on small samples are often inefficient and

unreliable (CHEN et al., 2017).

Several approaches have been proposed by researchers to produce efficient stud-

ies when faced with small datasets. One such approach is adding synthetic data

whilst making use of fuzzy theory results. HUANG e MORAGA (2004) suggest the

application of fuzzy theory to derive distinct patterns in order to improve the accu-

racy of artificial neural networks subject to small data samples. Another alternative

is the so-called synthetic minority over-sampling technique (SMOTE) (CHAWLA

et al., 2002), designed to deal with unbalanced data. This technique over-samples

sparse classes and adjusts the feature vectors based on the k−nearest neighbours
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approach, with a view to producing a more balanced topology.

An additional possibility is to use the bootstrap technique (TIBSHIRANI e

EFRON, 1993). CHAO et al. (2011) generated virtual samples to improve the

accuracy metric in a dataset, initially composed of 36 samples, for predicting the

outcome of radiotherapy in bladder cancer cells. The method was also implemented

within the manufacturing field in order to predict future production after reducing

the lead time based on pilot runs (TSAI e LI, 2008), for example. Furthermore, boot-

strapping was applied for predicting workload with reduced availability of historical

data (IVĂNESCU et al., 2006).

This study applies a technique based on bootstrapping to generate a synthetic

dataset for validation, which is further explained below.

Bootstrap

Bootstrap (TIBSHIRANI e EFRON, 1993) is a computationally intensive non-

parametric statistical resampling technique which does not require large sample

sizes. This approach is commonly used for statistical inference, where it is possible

to construct a distribution of the variable of interest. This estimated distribution

is used to make inferences and to obtain information about the parameter under

study, that is, in possession of this bootstrap distribution it is possible to obtain

information and even to test hypotheses. However, in this work we are interested in

the possibility of generating virtual samples.

In this procedure, the original dataset is considered as a good estimate of the

population density function. Operationally, this technique consists in performing

sampling of the same size as the original sample with replacement of the same. In

other words, n draws are performed with replacement from the original distribution,

n being the number of observations available in the original sample, which originates

a bootstrap sample. This procedure must be repeated B times to obtain B bootstrap

samples. The new dataset is comprised of the original sample and the B additional

bootstrap samples.
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Bootstrap samples, however, are only comprised of elements that are part of

the original sample. Hence, possible values that are not in the original sample

are indiscriminately avoided. That would not be advisable in our procedure, since

the intention is to generate a representative sample of parameters and evaluations.

Hence, this study draws instead from a uniform distribution for each parameter.

The minimum and maximum values of the distribution are defined to coincide with

the minimum and maximum values of the original sample.

2.3.2 Dimensionality reduction

Dimensionality reduction, a method that has been continuously improved in re-

cent years (XU et al., 2019), is used for dealing with high-dimensional data, aim-

ing to eliminate redundant and irrelevant information (SORZANO et al., 2014).

The method is highly used as a pre-processing tool and has been developed mainly

as a tool for machine learning and statistics. It is comprised of feature selection,

that analyses correlation coefficients and produces variable rankings, for instance

(GUYON e ELISSEEFF, 2003), and feature extraction (KHALID et al., 2014; XU

et al., 2019). While the former is concerned with selecting a meaningful subset of

the original variables (e.g., GUYON e ELISSEEFF, 2003), the latter is devoted to

synthesising a reduced subset of meaningful features from a high-dimensional space

(JOLLIFFE, 2002; PEARSON, 1901). One of the most used feature extraction

techniques is principal component analysis (PCA) (JOLLIFFE, 2002).

PCA (JOLLIFFE, 2002) is an orthogonal linear transformation, which conveys

the data in new coordinate system, in such a way that the components are ranked

in decreasing order of variance. It is usually applied to reduce the dimension of

the dataset while also retaining essential information. Other uses include extract-

ing the most important information from data and analysing the structure of the

observations and variables.

The PCA components can be obtained through singular value decomposition

(SVD). The SVD decomposition of a matrix is:
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X = UDV ′ (2.5)

where U is the matrix of left singular vectors; V is the matrix of right singular

vectors and D is the diagonal matrix of singular values. Multiplying X by V gives

the values of the projections of the observations on the principal components (ABDI

e WILLIAMS, 2010).

Feature selection has the advantage of keeping important information regarding

a specific feature. On the other hand, there is the risk of omitting a too much

information, mainly when it is necessary to select a really small set of features. Fea-

ture extraction also has its advantages and pitfalls. None of the feature information

is lost, but the feature interpretation becomes compromised because of the linear

combination of the original features (KHALID et al., 2014).

Feature selection methods can be classified as wrapper, filter or hybrid meth-

ods (XU et al., 2019), as shown in Figure 2.2. The first type is based on current

prediction information. Wrapper methods are able to obtain feature subsets that

perform better than selection by filter methods. However, it has a higher compu-

tational cost since it evaluates the performance heuristically. On the other hand,

filter methods use indirect measures, such as ranking and space search. also called

ensemble methods, Hybrid methods are a combination of the others.

2.3.3 Dimensionality reduction methods applied to

decision-making

One of the main steps for ranking alternatives by multicriteria methods is selecting

a set of criteria to guide the decision. Table 2.1 illustrates that decision makers

belonging to the oil and gas sector often select criteria according to the guidelines

in (BEIS, 2018), or based on stakeholders’ recommendations and literature review.

Other sectors employ distinct approaches, as conveyed in Table 2.2.

There are few studies that apply dimensionality reduction techniques for criteria
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Figure 2.2: The specific methods of dimensionality reduction.

Source: XU et al. (2019)

References Applications
Decision-making

methods
Criteria selection

methods

PEREZ-GALLARDO et al. (2018)
Ecodesign of photovoltaic

grid-connected systems
TOPSIS PCA

ZHU et al. (2015)
Reservoir flood

control operation
TOPSIS and

fuzzy methods
PCA

FAWZY et al. (2018)
Wind farm

suitability design
AHP and

Multi-Criteria evaluation
PCA

YURDAKUL e IC (2009) Machine tool selection TOPSIS
Correlation matrix -
Spearman coefficient

LIMA-JUNIOR e CARPINETTI (2016) Supplier selection
Fuzzy quality

function deployment
Classification and

decision makers opinion

AMIRSHENAVA e OSANLOO (2018) Mine closure
PROMETHEE and

TOPSIS
AHP weight attribution

AHMED et al. (2016) Vehicle dismantling AHP and fuzzy AHP DEMATEL

ISM (2011) Submarine dismantling
Comparative
assessment

Stakeholders opinion

Table 2.2: Summary of methods used to criteria selection in decision-making.

selection in decision-making methods. The PCA technique explained before in Sec-

tion 2.3.2 is usually applied to reduce problem dimension by identifying correlations

between variables. For example, ZHU et al. (2015) used PCA to transform the orig-

inal criteria into a system of independent synthetic criteria in order to eliminate the

effect of the correlation between the original objectives. They tested the approach

on a reservoir flood control operation problem. The MCDA results with and with-

out PCA were compared in order to evaluate the consistency of the results. The

same procedure was conducted for a wind farm suitability design problem (FAWZY

et al., 2018), transforming the correlated variables into a smaller number of uncor-

related counterparts, called principal components. Likewise, PEREZ-GALLARDO
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et al. (2018) applied PCA to reduce the number of criteria considered in the decision

regarding an ecodesign of photovoltaic grid-connected systems.

Dimensionality reduction methods were further applied to machine tool selec-

tion (YURDAKUL e IC, 2009). The approach here is rather simple and involves the

application of correlation tests for pairs of criteria in order to obtain a set of inde-

pendent criteria whose cardinality is small enough to be manageable by the MCDA

tool.

Oftentimes, however, the criteria are selected by simple ad-hoc methods that do

not make use of orthogonal decomposition or statistical analysis (e.g., YURDAKUL

e IC, 2009). One such method involves a systematic process based on the use of

linguistic terms by a group of decision makers to judge the intensity of the relation

between criteria (LIMA-JUNIOR e CARPINETTI, 2016). Such an assessment is

then contrasted with the difficulty in collecting the data needed to evaluate each

criterion, as well as the human resources and time required. The final selection is

made through a classification process whose output is a set of four groups of criteria:

priority, critical, complementary and costly. This last class is often avoided because

it involves secondary criteria that demand a considerable data collection effort.

In certain cases, the set of criteria to be evaluated are obtained from subjective

evaluations by key stakeholders (AHMED et al., 2016; ISM, 2011). For instance,

in the process of ranking vehicle dismantling possibilities, AHMED et al. (2016) in-

corporate stakeholders’ opinions through the Decision Making Trial and Evaluation

Laboratory (DEMATEL) method (GABUS e FONTELA, 1972), which is based on

their evaluation of the direct influence between any pair of sub-criteria. In a related

approach, criteria selection was the output of a workshop involving key stakeholders

in (ISM, 2011), in the context of submarine dismantling.

Another group of methods that has been researched for evaluating which crite-

ria should or should not be selected are the Hybrid Multi-Criteria Decision-Making

(HMCDM) (ZAVADSKAS et al., 2016), that combine MCDM methods with other

methods used for identifying the importance (relative significance) of criteria. For
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instance, AHP can be used to identify the most relevant criteria by means of the

pairwise evaluations which are characteristic of this method (AMIRSHENAVA e

OSANLOO, 2018). In AMIRSHENAVA e OSANLOO (2018), the alternatives were

later ranked using both PROMETHEE and TOPSIS methods, composing the HM-

CDM method application. Moreover, there are several applications of AHP/ANP

for evaluating the interdependent relationships among factors influencing the prob-

lem under consideration (ZAVADSKAS et al., 2016). For example, RABBANI et al.

(2014) applied ANP combined with COmplex PRoportional ASsessment (COPRAS)

method in order to evaluate the performance of oil producing companies and AMIRI

et al. (2009) applied AHP with TOPSIS for firms competence evaluation. Those ap-

plications could be easily extended for criteria selection.

2.3.4 Supervised methods

Supervised methods are generally used to aid in the decision making process in

practical applications and encompass both classification and regression models, both

of which aim to identify a relation between independent and dependent variables

(KUHN e JOHNSON, 2013). The first one produce a continuous valued prediction,

that is, it predicts categorical labels while the last one models continuous-valued

functions. The models are developed based on the analysis of a training set where

each observation has a related class label and it is used for predicting the classifica-

tion of unlabelled objects. The focus here is on the classification methods.

Classification methods, in particular, have been successfully employed in a num-

ber of applications in the oil and gas industry. Some examples include the utilisation

of Support Vector Machines (SVM), Decision Trees (DT) and Random Forests (RF)

to predict corrosion in pipeline inspection (LIU et al., 2019). Their goal was to auto-

mate the manual work of matching corroded areas with extracted features selected

from in-line inspection. In a related work, EL-ABBASY et al. (2016) make use

of regression analysis, artificial neural networks and DT to investigate the causes

of pipeline failure. The main difference is that the latter is focused on unpiggable
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pipelines and use features not related to internal corrosion, such as diameter, crossing

and age. Other applications were reported in (COPELAND et al., 2009; SCHUET-

TER et al., 2018). The former applies RF to forecast the development of oil and

gas fields and estimate the impact on the decrease of animal species. The latter

utilises classification models, such as SVM and GBM, to predict oil potential in un-

conventional shale reservoirs. Nonetheless, specific applications of machine learning

to decommissioning problems have been found lacking. One of the innovations of

this work is to fill this gap.

The following sections present a brief description of the four supervised methods

applied in this work: decision trees, random forest, gradient boosting machines

and support vector machine. Furthermore, we also present the metrics used for

evaluating the outcomes of these methods.

Decision trees (DT)

Decision trees (ROKACH e MAIMON, 2008), illustrated in Figure 2.3, is one of

the most popular classifiers. It is a supervised method that utilises a recursive par-

titioning algorithm to construct the tree and has the advantage of accepting both

numerical and categorical variables. It is a top-down approach that models deci-

sions and possible consequences, including growing and pruning stages. Basically, a

decision tree comprises:

• Nodes - a test on a attribute;

• Root - the topmost node;

• Branch - an outcome of the test;

• Leaves - a class label.

The process consists in continuously splitting the training data into two or more

descendant subsets, until a stopping criteria is reached or all classes are split. The

splitting criterion is selected in order to identify the partition of the training set.
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Figure 2.3: Decision tree example: weather condition for playing some unspecified
game.

Source: WITTEN et al. (2016)

There are different criteria that can be used for this. Impurity-based criteria, in-

formation gain, Gini index and DKM criterion are some of the most common ones

(MAIMON e ROKACH, 2005). In this work, we use Gini index, a measure of

heterogeneity, as it is the default for the rpart package (THERNEAU et al., 2019).

In order to avoid over-fitting, one can limit the growth of the tree or prune it.

Pruning is often attained by recursively snipping off the least important splits, based

on the complexity parameter (cp). On the one hand, because they depend on the

observation values, decision trees are robust to outliers. They are also fairly easy to

understand and interpret. On the other hand, they can be computationally expen-

sive due to the need of identifying splits from multiple variables (HODEGHATTA

e NAYAK, 2016).

Random forests (RF)

Random forests (BREIMAN, 2001) are a type of ensemble method, i.e., a method

that combines the predictions of many models. The two most traditional ensemble

algorithm types are bagging and boosting. Briefly, RF consists on first bootstrapping

the dataset, and selecting random samples to construct the training sample of each
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tree, which defines it as a bagging method. After that, the method randomly selects

the features of each tree and makes use of the Gini index to produce splits. Finally,

the model utilises the samples that were not part of the training set, the so called

out-of-bag (OOB) data, for testing purposes. The final response is based on a vote

on the decisions generated by each of the constructed trees.

It presents some benefits compared to other machine learning methods, such as

requiring only two parameters, namely the number of trees (ntree) to be generated

and the number of variables selected for each tree (mtry). BREIMAN (2001) rec-

ommends that mtry be equal to the square root of the total number of variables.

Other benefits include reducing over-fitting when compared to decision trees, since

the response is the average of several trees. Additionally, the random selection of

variables has the advantage of reducing the correlation between trees (FENG et al.,

2015). It may be argued that the technique is more robust by virtue of creating mul-

tiple decision trees and optimising the output to obtain a better-performing classifier

(HODEGHATTA e NAYAK, 2016).

Gradient Boosting Machines (GBM)

Similarly to RF, Gradient Boosting Machines (GBM) (FRIEDMAN, 2001) are also

a type of ensemble approach. The method relies on combining a large number of

weak trees to obtain a stronger ensemble prediction. Unlike RF models, whose

construction is based on a voting on the final decision of each tree, GBM is a type

of boosting method (NATEKIN e KNOLL, 2013). And the boosting is iterative,

consisting in adding new models to the ensemble sequentially, in such a way that

each new weak learner is built to mitigate the error of the whole ensemble established

so far. GBM consists in a gradient-descent based formulation of boosting methods.

The error to be minimised refers to a loss function that can come from different

distributions (e.g. binomial loss function, Gaussian L2 loss function) according to

the nature of the response variable (binary, continuous, categorical).

There are different approaches that can be introduced to GBM in order to
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avoid over-fitting, and therefore improve the model’s generalisation capabilities

(NATEKIN e KNOLL, 2013). One is sub-sampling and involves the selection of

a random subset of the training set at each learning interaction, the length of which

is defined by a parameter called bag fraction. This criterion is a positive value not

greater than the ratio of the data to be used in each sub-sampling. This means

implementing a stochastic gradient descent that steers the model away from lo-

cal minima. Another approach is to properly adjust the learning rate (shirinkage)

that controls how fast the gradient descent is, penalising the impact of each ad-

ditional fitted base-learner. In spite of potentially providing better generalisation,

reduced learning rates increase the computational cost. Hence, a compromise must

be pursued. Besides, one can also optimise the number of trees in the ensemble.

Furthermore, another aspect that can be controlled is the interaction depth, which

can be defined as the number of nodes in each tree. Finally, the last parameter

to be defined is the number of folds in the cross-validation process, that is further

explained in section 2.3.4.

Support Vector Machines (SVM)

Support Vector Machines (BOSER et al., 1992) are conceived to identify the hyper-

plane that maximises the distance between the two classes in a binary classification

problem. The configuration of the hyperplane depends on the distance to the train-

ing samples at the edge of the class, dubbed support vector points, as illustrated in

Figure 2.4. This example consists in a perfectly linearly separable two-class prob-

lem. SVM searches for the maximum marginal hyperplane because it increases the

chances of getting higher accuracy in future data (WITTEN et al., 2016).

The method was originally applicable only to linearly separable data, but can

now be generalised by means of a transformation into a higher dimensional space

(WITTEN et al., 2016). Afterwards, the supervised method searches for a new

hyperplane in the transformed space. This new multi-class problem can benefit

from a “one-to-one” approach, which gives rise to multiple binary classifiers, each

28



Figure 2.4: An example of a two-class problem where the classes are linearly sep-
arable. The dashed lines represent possible separating hyperplanes. SVM searches
for the hyperplane with the largest margin.

Source: WITTEN et al. (2016)

separating the training samples of a pair of different classes (KIM et al., 2003). The

appropriate class is decided by a vote.

There are two parameters to be optimised, namely the cost of constraint violation

(C) and sigma (σ), a parameter associated with the kernel function (GACQUER

et al., 2011). Compared with other supervised methods, SVM is effective in high

dimensional spaces and memory efficient (BRAGA et al., 2019; WITTEN et al.,

2016) since its complexity is associated with the number of support vectors rather

than the dimensionality of the data.

Model evaluation and selection

Evaluation metrics are used for optimise each model parameter, compare the perfor-

mance of competing models and understand their quality (MAIMON e ROKACH,

2005). Accuracy is a natural fit for defining the higher performance of a classi-

fier. However, there are several other evaluation metrics that can be used for model
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assessment.

In this work, we consider both accuracy and a measure of agreement to be

defined below. Firstly, we need to define the confusion matrix (RAZI et al., 2019)

Q = [qij], 1 ≤ i ≤ m, 1 ≤ j ≤ m, where m is the total number of classes. Each

element qij denotes the number of times that an element of class i was assigned to

class j according to the classification method. Also, recall from Section 3 that the

total number of pieces of equipment in the dataset is represented by r.

Accuracy is the percentage of correct predictions in a classifier when the classifier

is applied to unseen data (HOSSIN e SULAIMAN, 2015; RAZI et al., 2019). It is

given by:

P (0) =
1

r

m∑
i=1

qi,i × 100%. (2.6)

A measure that compares accuracy with the probability of agreement (COHEN,

1960; RAZI et al., 2019) is given by κ, and is defined as:

κ =
P (0)− P (E)

1− P (E)
, (2.7)

where P(0) is the accuracy for classification models and P(E) is the chance of agree-

ment, which is obtained as follows:

P (E) =

m∑
i=1

(q:,iqi,:)

r2
. (2.8)

In the expression above, q:,i and qi,: are, respectively, sum of i-th row and i-th column

of the confusion matrix.

In order to obtain reliable estimates of classifier effectiveness, the model should

be tested in a different data sample than the one used at the training stage. One

method commonly used is called holdout, and consists in using a fraction of the

dataset (for example 2
3

of it) for training and the remaining fraction for testing. The

drawback is that the training set may be considerably reduced (HAN et al., 2011).

Another option for small datasets is to re-sample the data and calculate an average
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evaluation metric for the model. k-fold cross-validation, for instance, consists in k

training stages, each with k samples used for testing and the remaining ones for

training (WITTEN et al., 2016). By doing that, one makes sure that all samples

are considered in the training phase on withheld portions of data.

Finally, statistical tests can be used for comparing machine learning methods

with respect to a certain performance measures (HAN et al., 2011; HOTHORN

et al., 2005). We compare the models based on the values of P (0) and κ resulting

from the k−fold cross validation. To determine whether a model is superior to

another, we apply a t-test with Bonferroni correction (BLAND e ALTMAN, 1995)

and use a 95% confidence level.
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Chapter 3

Problem Description

This chapter aims to clarify the dimensionality reduction technique here proposed

for decommissioning of oil and gas installations under an MCDA approach (Section

3.1) and provide details on the methodological procedure employed to reduce the

dimension of the problem (Section 3.2).

3.1 Formulation

Decision making for decommissioning in oil and gas platforms is generally carried

out from the analysis of each piece of equipment individually (e.g. BG GROUP,

2016; SHELL, 2017a; XODUS, 2017). Assume there is a set of decommissioning

alternatives A = {a1, a2, . . . , an} for a given piece of equipment, and suppose the

decision is to be reached based on a set of (sub)criteria G = {g1, g2, . . . , gm}. In

a decommissioning study, generally the (sub)criteria are related to environmental,

social, economic, safety and technical issues (MEI, 2018; OIL & GAS UK, 2015).

The evaluation gives rise in an N × M matrix comprised of the evaluations of

each alternative with respect to each (sub)criterion. As previously mentioned, the

majority of published decommissioning studies so far have relied on a methodology

called comparative assessment (e.g., MEI, 2018; OIL & GAS UK, 2015), which
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produces a performance index Ii for each alternative ai as follows:

Ii =
m∑
j=1

kjgj(ai), (3.1)

where kj is the weight attributed to (sub)criterion j, 1 ≤ j ≤ m, and gj(ai) is

the evaluation of criterion j for alternative ai, 1 ≤ i ≤ n. The alternatives are

then ranked in decreasing order of performance index. Other MCDA methods are

also applied in different decommissioning studies, such as AHP (e.g. NA et al.,

2017; REPSOL, 2017; XODUS, 2017), ELECTRE (e.g. DIMITRIJEVIC et al., 2014;

SOLTANMOHAMMADI et al., 2008) and PROMETHEE (e.g. KERKVLIET e PO-

LATIDIS, 2016; MERGIAS et al., 2007). The latter methods are somewhat more

complex, but can also be employed to generate a ranking of the alternatives based

on performance indices. A brief review of MCDA methods was presented in Section

2.2.1 and more details and analyses can be found in (GRECO et al., 2005).

A common issue in oil and gas decommissioning studies, regardless of the MCDA

approach employed, is that collecting information and producing each evaluation

gj(ai) for each piece of equipment often takes time. Furthermore, some criteria may

be the product of multiple evaluations by different, possibly conflicting, stakehold-

ers. On top of that, the abundance of pieces of equipment in the seabed leads to an

increase in complexity, especially in deep waters. For example, the Brent infrastruc-

ture is shown in Figure 3.1. The evaluation of the most appropriate decommissioning

alternatives for this field took almost ten years.

Some authors also point out that a large number of criteria can render the de-

cision making process more difficult and may generate confusion among the stake-

holders (AMIRSHENAVA e OSANLOO, 2018). In order to address these issues, this

paper builds upon a conjecture found in (MEI, 2018; OIL & GAS UK, 2015) that

the similar features in distinct pieces of equipment may lead to similar choices of

decommissioning alternatives. We argue, however, that similar features may not be

enough, since the selection also depends upon other factors, such as the environment

surrounding the piece of equipment. Fortunately, the evaluations of the alternatives
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Figure 3.1: Brent field scheme, UK.

Source: SHELL (2017b).

for each equipment can serve as a proxy for these factors. In addition, it is possible

that the evaluation of a reduced set of criteria may be enough to produce an ac-

curate estimation of the course of action that would be selected if all criteria were

accounted for.

Let E = {e1, e2, . . . , er}, 1 ≤ r ≤ ∞, be a small albeit representative subset

of the pieces of equipment found in a given oil field pending decommission. Let

gkj (ai), 1 ≤ j ≤ n, 1 ≤ i ≤ m, be the evaluation of the criterion j for alternative i

relative to piece of equipment ek, 1 ≤ k ≤ r. The proposed procedure includes the

three steps detailed in Algorithm 1 below:

Algorithm 1 (Classification Analysis of the Training Set)

1. For each piece of equipment ek, create a row vector pk comprising all parameters

and evaluations gkj (ai), 1 ≤ j ≤ n, 1 ≤ i ≤ m, as well as the action aki assigned by

the MCDA algorithm for this piece of equipment;

2. Use supervised classification to divide the population P = pk, k = 1, 2, . . . , r in m
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groups, one for each decommissioning alternative;

3. Find the characteristics and (sub)criteria that most impact in the action selection

by the MCDA algorithm

Observe that the decision maker can employ the output of Step 3 to simplify the

assessment of the decommissioning alternatives for pieces of equipment outside of

the training set. The assessment can now be performed as a function of the subset

of most relevant characteristics and criteria. It is our belief that, in most cases, such

a subset will have a rather reduced dimension when compared to the original set.

3.2 General method of analysis

As mentioned previously, this work proposes a twofold approach for mitigating errors

and reducing the time span of a decommissioning study in the oil & gas industry.

The suggested procedure includes finding the minimum possible number of criteria

to be assessed and seeking patterns in the decision making process to forecast the

outcome of the decision-aid tool for each installation without necessarily resourcing

to the costly MCDA assessment phase. This approach falls under the umbrella of

dimensionality reduction techniques, within the field of Machine Learning (ML).

Subsequently, the general method of analysis will be explored in details.

The method in Algorithm 1 comprises two distinct tasks: dataset pre-processing

and classification. Observe that Step 1 of Algorithm 1 generates a dataset where

each piece of equipment is associated with both its characteristics and the scores

for each alternative-(sub)criterion pair, as well as the decommissioning alternative

recommended by the selected MCDA tool.

Observe in Figure 3.2 that some ML algorithms are applied to the dataset un-

der a k−fold validation scheme (Steps 2-3 of Algorithm 1). As mentioned in Sec-

tion 2.3.4, this technique consists in k training stages, each with k samples used for

testing and the remaining ones for training (WITTEN et al., 2016). Our case study,
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Figure 3.2: Methodology framework regarding steps 2-3 of Algorithm 1.

in particular, makes use of decision trees (DT), random forests (RF), gradient boost-

ing machines (GBM) and support vector machines (SVM), explained previously in

Section 2.3.4. Each method is calibrated individually considering the evaluation

metrics accuracy and kappa (κ), as described in Section 2.3.4. The calibration is

performed by means of the grid search tool tunegrid contained in the carret package

(R programming).

In the model selection step, we compare the selected algorithms according to

selected evaluation metrics and statistical analyses, previously explained in Sec-

tion 2.3.4, and select a single model to be used in the remaining steps. A variable

relevance analysis then follows for the selected model. After that, the decision maker

chooses the smallest possible subset of the most relevant variables that maintains

the accuracy of the model. Finally, this subset is then selected to comprise the

reduced classification model in the last step.

Figure 3.3: Classification model deployment for decommissioning.

The application of the framework in the context of a decommissioning study of
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an oil and gas field is depicted in Figure 3.3. Let Es be the set of pieces of equipment

left out of the training set, with s >> r. It is this set that is fed to the first step

in Figure 3.3. For each piece of equipment ek ∈ Es, a vector pk is formed with

the evaluation of all relevant sub-criteria selected in Step 3 of Algorithm 1. Then,

the reduced model is applied to forecast the selected decommissioning alternative

(classification step), which is the output of the last step in Figure 3.3.
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Chapter 4

Numerical experiments

For the sake of validation, we applied the framework proposed in Chapter 3, to

pipeline data from the Brent field (SHELL, 2017a). The decommissioning alterna-

tives are presented in Table 4.1. A single alternative is to be selected considering

the set of twelve sub-criteria described in Table 4.2.

Alternatives Description
A1 Leave in situ with no further remediation required
A2 Leave tied-in at platform; remote and trenched
A3 Leave tied-in at platform; remote and rock-dumped
A4 Trench and backfill whole length
A5 Rock-dump whole length
A6 Recover whole length by cut and lift
A7 Recover whole length by reverse S-lay

Source: Adapted from SHELL (2017a).

Table 4.1: Pipeline decommissioning alternatives.

An important part of the proposed framework is the MCDA analysis for each

piece of equipment in the sample, refer to Step 1 of Algorithm 1 for details. However,

the approach is designed to work with any MCDA technique available to the decision

maker. At this point, it is worth emphasising that a discussion about the choice of

the MCDA approach to be employed is besides the scope of this study. It suffices to

say that we utilised the classical ELECTRE III (ROY, 1985) method, which makes

use of outranking to select an available course of action (ROWLEY et al., 2012).

Moreover, all machine learning experimental results were generated with 10-fold
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Criteria Label Weight Sub-criterion

Safety
C1 0.2

3
Safety risk to offshore project personnel

C2 0.2
3

Safety risk to other users of the sea
C3 0.2

3
Safety risk to onshore project personnel

Environmental

C4 0.2
4

Operational environmental impacts
C5 0.2

4
Legacy environmental impacts

C6 0.2
4

Energy use
C7 0.2

4
Emissions

Technical C8 0.2 Technical feasibility

Social
C9 0.2

3
Effects on commercial fisheries

C10 0.2
3

Employment
C11 0.2

3
Communities

Economic C12 0.2 Cost

Source: Adapted from SHELL (2017a).

Table 4.2: Sub-criteria for the decommissioning of the Brent field.

cross validation in order to obtain reliable estimates of the classifier effectiveness,

testing in a different data sample than the one used at the training stage. The com-

putational experiments were performed in R and made use of some public machine

learning libraries, namely rpart, caret, kernlab and gbm.

The following Section describes the data pre-processing and Section 4.2 features

an overview of the results.

4.1 Dataset

To validate our approach, the original intent was to use real-world data from decom-

missioning reports. In that sense, we found a dataset of sub-sea ducts in the context

of a classical report (SHELL, 2017a,c). It is composed by rigid and flexible pipelines,

umbilicals and cables, involving a total of 28 pipelines to be decommissioned.

According to SHELL (2017c), the decisions were considered for each pipeline

individually through a comparative assessment of the feasible alternatives. This

evaluation could be qualitative, quantitative or semi-quantitative and their method-

ology was based on the guidance notes in (DECC, 2011). They considered that

some pipelines would be evaluated only qualitatively, while others should be as-

sessed quantitatively. To assign pipelines to either of these two groups, they made
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use of the decision tree depicted in Figure 4.1.

Figure 4.1: Brent decision tree to assign pipelines to qualitative or quantitative
assessment.

Source: SHELL (2017c).

Unfortunately, the final dataset of pipelines subject to quantitative evaluation is
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comprised of only 14 samples, which is insufficient for our purposes (CHANG et al.,

2014; CHEN et al., 2017). In this study, we apply a variation of bootstrapping to

generate a synthetic dataset for validation. We observed that the dataset could

be clustered in four different groups according to their possible alternatives. The

groups are represented by different colours (green, blue, yellow and orange) in Table

4.3. The process described on Section 2.3.1 was applied to each group individually.

The bootstrap resample were produced by randomly drawing from a uniform dis-

tribution for each variable of the dataset. The minimum and maximum values of

the uniform distribution coincided with those of the corresponding variable in the

original dataset.
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Observe that there is a high discrepancy between the costs of the alternatives.

That is one of the reasons that influences the decision making methods to often select

the less invasive, and hence less costly, alternatives. Because of that, some costs were

artificially changed in the synthetic database generated from the bootstrap technique

previously described, in order to increase the variability of alternatives selected. The

resulting synthetic dataset with 1313 pipelines was made public for benchmarking

purposes (MARTINS et al., 2019), containing the evaluation of each sub-criteria for

each alternative and the physical features considered. The resulting probability of

selecting each of the seven available alternatives is depicted in Figure 4.2.

Figure 4.2: Data distribution.

The decommissioning guidelines in (MEI, 2018; OIL & GAS UK, 2015) gave rise

to the conjecture that the following variables could be used for classifying pipelines:

type (e.g. rigid, flexible); fluid (e.g oil, gas, water); size; length; coated/uncoated;

installation date; on bottom status (e.g. fully exposed, rock dumped), proximity

to other infrastructure; residues likely/ability to clean; condition (e.g. good and

recoverable, damaged). Bearing that in mind, and in possession of the dataset in

SHELL (2017c), we selected the following parameters of sub-sea ducts: diameter;

length; concrete, steel and coat composition; weight; fluid; proximity to other in-
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Comparative
Assessment

Brent
Recommendation

ELECTRE III

N0201 A5 A4 A3
N0601 A5 A6 A2
N0405 A5 A4 A1
N0303 A1 A4 A1
N0304 A5 A4 A1
N0404 A1 A4 A1
N0302 A5 A4 A3
N0301 A5 A4 A3
N0401 A5 A4 A1
N0402 A5 A4 A1
N0403 A5 A4 A1
N0501 A4 A4 A1

N9903A A5 A4 A5
N9903B A5 A4 A4

Table 4.4: Decommissioning alternatives recommended by comparative assessment,
Brent report and ELECTRE III.

frastructure (number of crossings); installation date; cleaning type and on bottom

status.

The initial dataset in (SHELL, 2017a,c) contained all of the eleven parameters

mentioned above for each piece of equipment. In addition, it also included the evalu-

ation of each of the seven alternatives with respect to each of the twelve sub-criteria

described in Table 4.2. For each piece of equipment, we applied the ELECTRE

III tool, with the same set of weights used in the original decommissioning report

- which appears in Table 4.2, to produce the recommended decommissioning al-

ternative. The values of indifference, preference, and veto thresholds were set to

zero.

The decommissioning alternatives recommended by the comparative assessment

method, Brent report final choice and ELECTRE III are presented in Table 4.4

for the fourteen pipelines from the original dataset. Observe that Brent final rec-

ommendations were equal to the comparative assessment results in only one of the

fourteen samples.

The recommended decommissioning alternative acts as the independent variable

in the supervised training routine in Step 2 of Algorithm 1. In that routine, each
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equipment ek = (xk, yk) is an entry in the dataset, where xk is a vector containing

all the parameters and sub-criteria assessments and yk is the independent variable,

i.e., the decommissioning action the MCDA tool recommended for the respective

installation.

4.2 Experimental results

This section is divided into two subsections. In the following subsection, we report

the results of each selected machine learning technique in the supervised classifica-

tion problem of Step 2 in Algorithm 1. Then, Section 4.2.1 illustrates the results

of Step 3 of Algorithm 1, that was performed only for the GBM model, which

outperformed the competing methods in Step 2.

4.2.1 Model comparison

The aim of this section is to compare the performance of selected machine learning

techniques, namely DT, RF, SVM and GBM, for predicting decommissioning de-

cisions based on the input variables described in Section 4. We implemented Grid

search (BERGSTRA e BENGIO, 2012), a method to perform hyper-parameter op-

timisation, was implemented in order to optimise accuracy of each techniques eval-

uated. The parameters are briefly discussed below:

• DT: The only specification to be optimised for decision trees is the complexity

parameter and it was set as 0.047.

• RF: The number of trees was set as 1000. We tried each value in the set

{8, 9, . . . , 13} for the parameter mtry, i.e. the optimal number of variables

selected for each tree. The optimal value obtained was 13.

• SVM: We used the radial basis function kernel

and the parameter search was for σ in the set

{0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5}
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and C ∈ {1.5, 2, 2.5, 3, 3.5, 4, 4.5 , 5}. The selected values were σ = 0.04 and

C = 5.

• GBM: All combinations involving interaction depth in the set {6, 7, 8},

number of trees in the set {130, 131, . . . , 140} and shrinkage in the set

{0.1, 0.15, 0.2, 0.3} were evaluated. Also, the multinomial distribution was

assumed. The best results were obtained with 140 trees, interaction depth

equal to 7 and shrinkage equal to 0.1. The bag fraction was set to 0.8.

Table 4.5 and Figure 4.3 summarise the evaluations of accuracy (P (0)) and κ for

the optimised models. Also, Table 4.6 shows the p-values of pairwise t-test results.

The significance threshold was α = 0.05. Each element in Table 4.6 is the p−value

of the null hypothesis, according to which the algorithms in the corresponding line

and column, respectively, are indifferent with respect to the performance measures.

One can see from the referred table that this hypothesis is rejected in all pairwise

comparisons.

Accuracy
Min 1st Qu. Median Mean 3rd Qu. Max

GBM 0.78 0.80 0.82 0.82 0.83 0.88
RF 0.74 0.77 0.79 0.79 0.81 0.84

SVM 0.67 0.70 0.70 0.71 0.74 0.75
DT 0.59 0.61 0.62 0.62 0.63 0.64

Kappa
Min 1st Qu. Median Mean 3rd Qu. Max

GBM 0.71 0.73 0.76 0.76 0.78 0.84
RF 0.64 0.69 0.71 0.72 0.74 0.78

SVM 0.55 0.60 0.60 0.61 0.65 0.66
DT 0.43 0.45 0.47 0.47 0.48 0.49

Table 4.5: Model comparison through accuracy and kappa evaluation metrics.

An inspection in the preceding results yields that the GBM model presents the

best overall performance considering all features. It boasts a mean accuracy of 82%

and κ = 72%. At the other end, the worst performance is attained by DT, with

significantly lower accuracy and κ. Bearing that in mind, the GBM algorithm was

selected for feature selection in Step 3 of Algorithm 1.
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Figure 4.3: Model comparison.

Accuracy
RF SVM DT

GBM 0.026 2.71e-05 1.758e-08
RF 2.5e-04 1.26e-07

SVM 3.58e-06

Kappa
RF SVM DT

GBM 0.019 3.18e-05 5.56e-09
RF 3.6e-04 3.56e-08

SVM 1.06e-06

Table 4.6: The p-values corresponding to pairwise comparison of different classifi-
cation models.

Feature selection

GBM’s feature selection tool is hybrid and combines learning and feature selection

(LISO, 2016). The measure of relative importance is due to FRIEDMAN (2001)

and is a function of the number of times that a variable is selected for splitting

nodes, modulated by the model improvement as a result of each split. For the sake

of comparison, the measures of importance are standardised.

As previously stated, GBM was the chosen method for variable selection because

it performed best in the classification step. The goal here is to eliminate irrelevant
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features, i.e., installation parameters or sub-criteria assessments with very limited

impact on the output of the MCDA method. By doing so, one can build a lower

dimensional model with comparable performance and decreased computational cost

(GUYON e ELISSEEFF, 2003). From a practical standpoint, this means that we can

find an alternative model that requires a reduced number of sub-criteria assessments

and data collection. This, in turn, implies in an accelerated decision making process,

with potentially considerable reductions in both costs and times for data acquisition

and sub-criteria evaluation.

In our case study, we opted to maintain all eleven features associated with the

installation parameters, which were enumerated in Section 4. This is because this

information is very easy to obtain, and hence the omission would not bring any

relevant benefit. Figure 4.4 conveys the relative importance of each sub-criteria

that appears in Table 4.2. It stands out that the sub-criteria C12 (Cost) was the

most important. In addition, we found that C12 (Cost), C6 (Energy Use), C11

(Communities), C1 (Safety risk to offshore project personnel), C7 (Emissions), C4

(Operational environmental impacts), C2 (Safety risk to other users of the sea) and

C9 (Effects on commercial fisheries), are responsible for about 91.85% of the total

importance. Furthermore, it is also striking that the sub-criteria C8 (Technical

feasibility) presents a very limited relevance, representing only 0.24% of relative

influence.

To test the effect of removing the less significant variables from the model, we

tested the GBM model with the subset of most relevant sub-criteria that account

for 92%, 83%, 68% and 56% of relative importance, respectively. Obviously, the

objective is to come up with the smallest possible subset of sub-criteria that produces

no significant decrease in accuracy.

Table 4.7 summarises accuracy and kappa evaluation metrics for each subset

considered. The p-values produced by each t−test with respect to a pair of models

are unveiled in Table 4.8. One can easily see from the latter table that the models

with 92% and 83% of the total importance are indistinguishable from the original
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Figure 4.4: Criteria variables relative importance.

Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.79 0.80 0.82 0.82 0.83 0.88
GBM (92%) 0.78 0.79 0.80 0.81 0.83 0.88
GBM (83%) 0.76 0.80 0.81 0.81 0.83 0.86
GBM (68%) 0.76 0.78 0.80 0.80 0.81 0.83
GBM (56%) 0.75 0.76 0.78 0.78 0.80 0.82

Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max.

GBM (100%) 0.71 0.73 0.76 0.76 0.78 0.84
GBM (92%) 0.71 0.73 0.74 0.75 0.77 0.84
GBM (83%) 0.68 0.74 0.75 0.75 0.77 0.81
GBM (68%) 0.67 0.71 0.74 0.73 0.75 0.78
GBM (56%) 0.67 0.68 0.71 0.71 0.74 0.76

Table 4.7: Performance comparison of GBM considering different subsets of variables
through accuracy and kappa evaluation metrics.

model. This means that we can keep only half of the sub-criteria assessments,

namely sub-criteria C12, C6, C11, C1, C7 and C4, with virtually no impact on the

performance of the classification method.

The results seem very promising, and suggest that the decommissioning study
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Accuracy
GBM (92%) GBM (83%) GBM (68%) GBM (56%)

GBM (100%) 1 1 0.18 0.054
GBM (92%) 1 1 0.259
GBM (83%) 0.563 0.029
GBM (68%) 0.28

Kappa
GBM (92%) GBM (83%) GBM (68%) GBM (56%)

GBM (100%) 1 1 0.20 0.064
GBM (92%) 1 1 0.279
GBM (83%) 0.560 0.030
GBM (68%) 0.31

Table 4.8: p-values corresponding to pairwise comparison of GBM models consider-
ing different subsets of variables, according to the percentage of relative importance
of the criteria given by the method of FRIEDMAN (2001).

of an oil field can be considerably simplified with the application of the proposed

method. Indeed, eliminating half of the sub-criteria assessments with no significant

loss in performance would be a very welcome development in a long, complex process.

Arguably, one can expect considerable reduction in the number of sub-criteria since,

in a complex process such as that which sets up the sub-criteria, it is possible that

many criteria and sub-criteria assessments be highly correlated. Such a correlation

can be captured my machine learning techniques in the process of generating a

simplified analysis tool with comparable results.

Another potential gain of the proposed approach is that one does not need to

deploy the MCDA tool for all installations. Instead, it is only utilised in the training

set. For all installations outside this set, the decision maker can simply make use of

the predictions provided by the machine learning classification tool.
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Chapter 5

Conclusions

This study developed a framework based on supervised algorithms and dimension-

ality reduction techniques aiming to reduce the time and effort of sub-criteria eval-

uations in a decommissioning study. The framework makes use of a reduced dataset

comprised of installations’ characteristics and sub-criteria evaluations. A number

of machine learning algorithms is then applied to the dataset and that with the

best overall performance is singled out for variable selection. This latter step then

produces a reduced subset of relevant sub-criteria that should be measured for the

pieces of equipment left out of the training dataset. The reduced model can be

used to predict the decommissioning alternative for these pieces of equipment, thus

circumventing the need for a case by case MCDA analysis.

The framework was validated through numerical analyses for a synthetic dataset

based on real data for pipelines in the Brent field (SHELL, 2017c). The synthetic

dataset generated through bootstrap contains 1313 samples and played a fundamen-

tal role in the validation of the proposed approach. The variables included eleven

characteristics, such as diameter and fluid type, and the evaluation of twelve sub-

criteria for each of the seven decommissioning alternatives. We used ELECTRE III

to generate the recommended alternatives for each installation in the dataset.

Another proposed objective was to compare the performance of different su-

pervised methods to classify the oil & gas installations according to the selected

decommissioning alternative, considering accuracy and kappa as evaluation metrics.
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In the numerical experiments, GBM was the best classification tool, outperforming

DT, RF and SVM. The variable selection stage for GBM yielded very promising

results, fulfilling the last specific objective proposed in this study. This procedure

showed that half of the sub-criteria could be left out of the analysis with virtually

no effect on the performance, keeping Cost, Energy use, Communities, Safety risk

to offshore project personnel, Emissions and Operational environmental impacts.

One significant contribution is the suggestion that the decision maker can accu-

rately predict the recommended decommissioning alternatives with a reduced num-

ber of sub-criteria evaluations. In addition, the use of machine learning precludes the

need for a case by case MCDA analysis, since the recommended alternatives for the

installations outside the training set can be accurately forecast by the classification

method.

The current work can be extended in future studies. For instance, different su-

pervised methods could be considered and compared with the ones already applied.

In addition, this study considered the same set of weights used in the original de-

commissioning report. Future studies could evaluate the effects of varying weights

on the final decommissioning alternative recommended.
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